请教这个初三数学题怎么解决

解:(1)证明:在Rt△FCD中,

∵G为DF的中点,

∴ CG= FD.

同理,在Rt△DEF中,

EG= FD.

∴ CG=EG

(2)(1)中结论仍然成立,即EG=CG.

证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,

∵ AD=CD,∠ADG=∠CDG,DG=DG,

∴ △DAG≌△DCG.

∴ AG=CG.

在△DMG与△FNG中,

∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,

∴ △DMG≌△FNG.

∴ MG=NG

在矩形AENM中,AM=EN.

在Rt△AMG 与Rt△ENG中,

∵ AM=EN, MG=NG,

∴ △AMG≌△ENG.

∴ AG=EG.

∴ EG=CG.

证法二:延长CG至M,使MG=CG,

连接MF,ME,EC,

在△DCG 与△FMG中,

∵FG=DG,∠MGF=∠CGD,MG=CG,

∴△DCG ≌△FMG.

∴MF=CD,∠FMG=∠DCG.

∴MF‖CD‖AB.

∴ .

在Rt△MFE 与Rt△CBE中,

∵ MF=CB,EF=BE,

∴△MFE ≌△CBE.

∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°

∴ △MEC为直角三角形.

∵ MG = CG,

∴ EG= MC.

(3)(1)中的结论仍然成立,

即EG=CG.其他的结论还有:EG⊥CG.